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Abstract

Isospin breaking correction to the ∆I = 1
2 decay of K → ππ generates

a large enough contribution to ǫ′ through an induced ∆I = 3
2 amplitude

in KL decay. Aside from the π-η and π-η′ mixing contributions, there is a

correction of kinematical origin due to the final-state π±-π0 mass difference,

which is unambiguously calculable from the low-energy off-shell behavior of

the K → ππ amplitude. This correction to ǫ′ reduces the isospin breaking

parameter ΩIB by 0.06, which is nearly one half of the π-η mixing effect

computed with chiral Lagrangians to O(p2).
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I. INTRODUCTION

The ǫ′ parameter measures the CP phase difference between the ∆I = 1
2

and ∆I = 3
2

amplitudes in K0 decay:

ǫ′ =
−i√

2
ei(δ2−δ0)ω

(

ImA0

ReA0

− ImA2

ReA2

)

, (1)

where A0,2 are the K → ππ amplitudes into Iππ = 0 and Iππ = 2. In the Standard
Model with the conventional CP phase assignment to quark mixing, the penguin decay is
practically the entire source of ImA0. Because of the ∆I = 1

2
enhancement, the isospin

breaking correction to the penguin decay is a major ∆I = 3
2

contribution to ǫ′. The π-η and
π-η′ mixing contributions to the isospin breaking have been computed [1].

The isospin breaking effect is parametrized by

ΩIB =
ImAIB

2

ωImA0
, (2)

where ω = ReA2/ReA0 ≃ 1/22, and AIB
2 is the ∆ = 3

2
amplitude induced by the electro-

magnetic or the u-d quark mass difference correction to the ∆I = 1
2

amplitude. The isospin
breaking parameter ΩIB enters ǫ′ as

ǫ′ =
−i√

2
ei(δ2−δ0)ω

[

ImA0

ReA0
(1 − ΩIB) − ImA′

2

ReA2

]

, (3)

where ImA′
2 = Im(A2 − AIB

2 ). The contribution of the π-η mixing to ΩIB is

Ωπη
IB = 0.13 (4)

according to the calculation of O(p2) in chiral Lagrangian [1,2]. The recent calculation to

O(p4) raised the value to 0.16± 0.03 [2]. After including π-η′ mixing, Ωπη+πη′

IB = 0.25± 0.08
has also been quoted [1].

The purpose of this short paper is to point out that there is one obvious isospin breaking
correction to the ∆I = 1

2
amplitude which arises from the π±-π0 mass difference of the final

pions. This is an effect of O(p2) in the momentum expansion and numerically as large as one
half of Eq. (4) with the opposite sign. Considering its significance in testing the Standard
Model with ǫ′, we wish to call attention to this obvious correction.

II. ISOSPIN BREAKING BY EXTERNAL PION MASS DIFFERENCE

The isospin structure of the K → ππ decay amplitudes is parametrized as

A(K0 → π+π−) = A0(p
2
K , p2

π±, p2
π±) +

1√
2
A2(p

2
K , p2

π±, p2
π±),

A(K0 → π0π0) = A0(p
2
K , p2

π0, p2
π0) −

√
2A2(p

2
K , p2

π0, p2
π0). (5)

The amplitude A0 in Eq. (5) for I = 0 actually hides an I = 2 component through
the external pion mass dependence. The external four-momentum dependence of the A0

amplitude has been well known to O(p2):
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A(p2
K , p2

a, p
2
b) =

1

2
A′(0)(2p2

K − p2
a − p2

b) + O(p4), (6)

where A′(0) is a constant, and pK and pa,b denote momenta of K0 and two final pions.
This robust external momentum dependence is a consequence of SU(3) symmetry of strong
interaction and charge conjugation property of the parity-violating nonleptonic decay inter-
action [3], though it is more often discussed with chiral symmetry nowadays. The π±-π0

mass difference of the final pions in Eq. (6) generates an effective ∆I = 3
2

amplitude and
contributes to ΩIB through ImA2. To our surprise, this correction has not been counted in
literature.

On the mass shell the A0 amplitude of Eq. (6) has the external mass dependence to
O(m2

P ),

A0(K
0 → π+π−) = A′(0)(m2

K0 − m2
π±),

A0(K
0 → π0π0) = A′(0)(m2

K0 − m2
π0). (7)

A ∆I = 3
2

amplitude emerges from the difference m2
π± −m2

π0 in Eq. (7). Define the induced
∆I = 3

2
amplitude as

AIB
2 ≡ −

√
2

3
A′(0)(m2

π± − m2
π0). (8)

Moving AIB
2 from A0 to A2, we can rewrite Eq. (5) up to the O(p4) correction as

A(K0 → π+π−) = A′(0)(m2
K0 − 〈m2

π〉) +
1√
2
(A2 + AIB

2 ),

A(K0 → π0π0) = A′(0)(m2
K0 − 〈m2

π〉) −
√

2(A2 + AIB
2 ), (9)

where 〈m2
π〉 = 1

3
(2m2

π± + m2
π0).

Substituting the imaginary part of Eq. (8) in Eq. (2), we obtain the contribution of
ImAIB

2 to ΩIB as

∆ΩIB = −
√

2

3ω

(

m2
π± − m2

π0

mK0 − 〈m2
π〉

)

,

= −0.058. (10)

This is the external mass difference contribution to ΩIB to O(p2) of A0. The sign is oppo-
site to the π-η and π-η′ contributions, and the magnitude is nearly one half of the O(p2)
contribution of π-η mixing [1,2],

Ωπη
IB =

md − mu

3
√

2(ms − mu,d)
,

= 0.13, (11)

and more than a third of Ωπη
IB = 0.16 ± 0.03 [2] which includes O(p4).
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III. DISCUSSION

It is obvious that this pion mass difference contribution is not counted in the π-η and
π-η′ mixing calculation. It is purely kinematical in origin. Our number is at the level of
O(p2) in the language of chiral Lagrangian expansion. While the π-η mixing correction is
fairly clean to O(p2), the O(p4) correction contains more dynamical uncertainties. In our
calculation we have ignored an explicit SU(3) breaking in A0(p

2
K , p2

a, p
2
b) of Eq. (6). This is

the only possible source of uncertainty involved in Eq. (10). We make a remark on it.
The s-u/d quark mass difference in internal lines generates an SU(3)-breaking A0 term

that does not vanish in the soft meson limit. In chiral Lagrangians, one quark mass insertion
does not generate a nonderivative term for the ∆I = 1

2
decay since tr(λ6MqU

†) can be
diagonalized away. Therefore there is no correction of O(m2

P ) to our result. The internal
quark mass correction is of O(m2

P ) × O(p2), which is the same as O(p4) on the mass shell
of K → ππ. An explicit computation of O(p4) to one-loop was made with the kaon off
mass shell, while keeping the pion masses on shell and degenerate [4]. In this calculation the
explicit SU(3) breaking of the quark mass insertion manifests itself in the terms proportional
to m2

K − m2
π instead of p2

K −m2
π. This SU(3) breaking turns out to be very small primarily

because of the loop factor 1/(4πfπ)
2. Therefore the next-order correction to Eq. (10)

is expected to be small. If one wishes to compare our result with the O(p4) result of
ΩIB(= 0.16± 0.03) from chiral Lagrangians, one had better compute for consistency the A0

amplitude with the pions off mass shell and include the next order terms of (m2
K−m2

π)×O(p2)
in Eq. (10). Though it is small in magnitude, the next-order correction to Eq. (10) contains
dynamical uncertainty.
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